
Density-functional theory of solid-to-solid isostructural transitions

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1994 J. Phys.: Condens. Matter 6 10965

(http://iopscience.iop.org/0953-8984/6/50/007)

Download details:

IP Address: 171.66.16.179

The article was downloaded on 13/05/2010 at 11:32

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/6/50
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience
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Density-functional theory of solid-to-solid isostructural 
transitions 
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Sektion Physik der Ludwig-Maximilims Univenitnt Miinchen, TheresiensvaBe 37. D-80333 
Miinchen. Germmy 

Received 15 August 1994 

Abstrad We apply density-functional theory to study the expanded-Fcc-to-candensed-Fcc 
Vansition of a system of hard. spherical particles with a short-ranged attractive interaction. 
predicted recently by the simulations of Bolhuis and Frenkel. Our approach is based OD a 
non-penurbative treatment of the repulsive hard-core part of the potential, using the modified 
weighted density approximation (MWDA). and a meamfield approximation for the atlmctive part. 
We confirm by means of this simple theoretical ha tment  the existence of an isostmcturitl 
solid-to-solid m s i l i o n  which terminates 31 a critical point. in quantitative agreement with 
the Simulation data. We obtain. within this approximation. classical critical exponents for the 
continuou transition. 

1. Introduction 

One of the most important and best known phase transitions is the freezing of a fluid 
into a regular crystalline lattice accompanied by a spontaneous breaking of the continuous 
translational symmetry. Although many empirical facts have accumulated during the last 
century, it is only since the last decades that microscopic aspects of freezing have been 
studied [I]. 

The best way to get a direct theoretical insight into the molecular freezing mechanism 
is to consider very simple models which exhibit freezing and melting. The most simple 
system is that of hard spheres, i.e. a classical many-particle system whose interaction is 
governed solely by an excluded spherical volume around each particle. Since the Boltzmann 
factor of hard spheres is independent of temperature, their phase diagram depends only 
on their number density p. Computer-simulation studies show that there is a first-order 
freezing transition from a fluid with density p p 3  = 0.94 to an FCC-crystahe solid with 
density psu3 = 1.04, U being the hard-sphere diameter. The hard-sphere system is entirely 
governed by entropy, hence freezing turns out to be dominated by packing effects. Computer 
simulations have also revealed that other classical systems characterized by a spherically 
symmetric pair potential u(r)  exhibit freezing. The current view is that freezing is induced 
by the repulsive core of the interaction while details of the transition (such as the structure 
of the crystalline lattice and the exact location of the melting line) are triggered by energy. 
i.e. by the softness of the core and by the attractive part of u ( r ) .  For soft interactions 
(e.g. inverse-power-law and repulsive Yukawa potentials) a BCC solid is thermodynamically 
stable and solid-to-solid uansitions from an FCC to a BCC structure are possible [2j. Based 
on computer simulations, Bolhuis and Frenkel [3] recently reported another isustrucrural 
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solid-to-solid transition for hard spheres with a very short-ranged attractive interaction. In 
the temperature-pressure diagram these transitions form a first-order line between two FCC 
crystals with different lattice constants which terminates at a critical point of two solid 
phases. 

In constructing microscopic theories of freezing based on classical statistical mechanics 
considerable progress was made using density-functional methods, which are based on 
the fluid state and view freezing as a condensation of fluid density modes. Different 
approximations of the free-energy density functional have been proposed, for a review 
see [4]. As a non-trivial reference system, hard-sphere freezing is obtained without any 
parameter fitting, and quantitative agreement between theory and simulation is achieved. 
Among the best approximations are the non-perturbative weighted-density approximation 
[SI (WDA), and a modified weighted-density approximation [6] (MWDA), by Ashcroft and 
co-workers. Frequently the treatment of more complicated potentials u ( r )  is done via 
thermodynamic perturbation theory around a hard-sphere reference system. This approach 
has been successfully applied to a Lennard-Jones interaction [7, 91. 

In this paper we present a density-functional theory for the isostructural solid-to-solid 
transition discovered by Bolhuis and Frenkel 131, for systems composed of particles which 
interact by means of a hard-sphere plus a short-range attractive square-well potential. A 
theoretical study of similar systems by Tejero et a1 has also recently been published [9], but 
the pair potential in this case was taken to be of a double Yukawa form which, for different 
choices of the Yukawa parameters. can model long-range potentials (such as Lennard-Jones 
[lo]) as well as short-range ones. We use hard spheres as a reference system treating them 
with the MWDA. The attractive part of the potential is approximated by a simple mean- 
field approach. Within this theory we confirm the isostructural solid-to-solid transition 
quantitatively. Taking the capability of the theory for granted, we predict the location of 
the point at which the solid-solid coexistence disappears altogether, because it is always 
preempted by the melting transition. Within our theory we find that the critical exponents are 
classical. Our theory has the further advantage of being relatively simple, and numerically 
less involved than a direct simulation. We remark that it is the first density-functional theory 
which predicts isostructural solid-to-solid transitions in simple systems. ?here have been 
density-functional studies on sticky hard spheres which however did not focus on solid- 
to-solid transitions [ l l ]  and on solid-to-solid transitions in Yukawa systems [12] where, 
however, a change in the crystalline structure occurs. 

The rest of the paper is organized as follows. In section 2 we describe the method and 
approximations used to study the problem. In section 3 we present the results, compare 
them with simulation data [3], and discuss the features of the obtained phase diagrams. 
Finally. in section 4 we propose ways to improve upon the theory presented in the paper, 
and conclude. 
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2. Theory 

Following Bolhuis and Frenkel [3], we consider a system of spherical particles with a hard- 
sphere repulsive core and a shon-range attraction, the latter being modelled by a square-well 
potential. Thus, the interparticle potential is taken to have the form 
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In ( I ) ,  a is the hard-sphere diameter, 6 is the width of the attractive potential, and - E  is its 
depth ( E  > 0). Our goal is to investigate the phase diagram of a system with an interaction 
given by (1) for the case of a short-range attraction, for which Bolhuis and Frenkel 131 
have discovered the existence of an isostructural FCC-to-FCC transition at low temperatures. 
The strategy we follow is to separate the interaction (1) into a hard-sphere repulsion and 
an attractive pa& and treat the former by means of density-functional theory (DFT), and the 
latter in the mean-field approximation (MFA). The most natural partition of the interaction 
(1) is to write 

vG-1 = uo(r) + 4 ( r )  (2) 

where 

is the hard-sphere (HS) interaction, and 

is the attractive part. Our starting point is the Gibbs-Bogoliubov inequality 1131, which 
states that the Helmholtz free energy F of a system characterized by the interparticle 
interaction U can be related to that of a reference system having interaction uo by 

F < Fo + (U - u0)o. (5 )  

In equation (S), FO is the Helmholtz free energy of the reference system, and ( 0 ) o  denotes 
the thermodynamic average of the quantity U in the Hamiltonian of the reference system. 
Choosing the HS interaction as the reference Hamiltonian, and applying equation (5 )  for a 
uniform (homogeneous) fluid, we obtain 

F ( p J  < Fo(p11 + ~ N p i  go@; p i )@(r )dr  (6) I S  
where N is the number OF particles in the specified volume V ,  p ,  = N / V  is the number 
density, and g&; p i )  is the radial distribution function [I31 of the reference (HS) system. 
On the other hand, a crystalline solid is characterized by a strongly non-uniform one- 
particle density, p ( r ) .  According to the basic theorem of density-functional theory 1141, the 
Helmholtz free energy of a non-uniform (inhomogeneous) system is a uniquefunctional of 
the one-particle density, F = F [ p ( r ) ] .  Applying the Gibbs-Bogoliubov inequality to this 
case, we obtain 

(7) F [ p ( r ) l  < Fo[P(T)~+ 5 /gA2'('. T': [ P ( ~ ) I ) P ( ~ ) P ( ~ ' ) ~ ( I V  - r 'Ddrd r '  

where @(r,  T'; [ ~ ( r ) ] )  is the pair distribution function of the solid, which is also a unique 
functional of the one-particle density [14]. We can also write go = ho+ 1, For both uniform 
and nowuniform phases, introducing the pair correlation function ho. 

1 
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The Gibbs-Bogoliubov inequality is used in most cases in a variational sense: on the 
right-hand side, one or more variational parameters are introduced, and these are varied 
until an optimal upper bound for the sought-for Helmholtz free energy is obtained. A usual 
variational parameter is the diameter of the reference HS interaction, for example. However, 
we do not have this freedom here, since the partition of the potential is determined by the 
potential parameters uniquely (equations (2)-(4)). Thus, as a first approximation, we treat 
the Gibbs-Bogoliubov inequality as an equality, i.e. we introduce the approximations 

F(pd = FO(PI) + ~ N P I  / &)dT + f NPI / W ;  p1)4(r) d r  
1 

(8) 

for the homogeneous phase. and 

1 
F[p(r)l e FoIp(r)l + 5 /p(r)p(r'M(lr - r'DdTdr' 

+ - hg'(r,  T'; Ip(r)J)p(r)p(r')$4lr - r ' l )drdr '  (9) 2 ' J  
for the inhomogeneous one. The last term in equations (8) and (9) describes the effect on 
the internal energy from the correlations that arise due to US repulsions alone. As a last 
approximation, (which greatly simplifies the implementation of the theory), we treat the 
attractive part in the mean-field approximation, i.e. we completely ignore this last term for 
both the liquid and the solid. Thus, our final approximation reads 

1 
F ( p d  = FO(PI) + ~ N P I  / #(r)dT (10) 

for the liquid, and 

F[p(r)l = Fo[P(T)~-! -  p(r)p(r')rp(lr - p.'l)dTdr' (11) 

for the solid. An alternative derivation of equations (8) and (9) is given in the appendix 
11% 

For the liquid phase, the excess free energy per particle of the HS reference system is 
given very accurately by the Carnahan-Starling equation of state [16]. To this, we have to 
add the ideal-gas term, and the MFA term, to obtain 

where 7 is the temperature, q = np1u3/6 is the packing fraction of the HS liquid, and 
A is the thermal de Broglie wavelength. (The last term in (12), being identical at a given 
temperature for both liquid and solid phases, does not affect the comparisons between those, 
and will be henceforth ignored.) 

For the solid having average density ps = N /  I', we shall adopt a usual (and accurate) 
parametrization for the one-particle density p ( r ) .  and model this quantity as a sum of 
isotropic Gaussians centred around lattice sites, i.e. 
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where (R.} is the set of lattice vectors of the given Bravais lattice. The limit 01 -+ 0 
corresponds to completely delocalized Gaussians, and it will be taken to correspond to 
the uniform liquid, whereas the Gaussians become more and more localized as 01 grows. 
Denoting by p~ the Fourier components of p ( r ) ,  and by V K  p ~ j p ~  the dimensionless 
Fourier components, the parametrization (13) immediately implies 

(14) V K  = 

where ( K )  is the set of reciprocal lattice vectors (RLVS) of the given lattice, and K = IKI. 
The ideal part of the free energy of the solid is known exactly, and it is given by the 
expression 

!?!!? = 1 p(r)[ln(p(r)03) - 1 d r  + 3 In(A/o). 
N N  1 

For the excess free energy of the non-uniform system, we adopt the modified weighted 
density approximation (MWDA) of Denton and Ashcroft (61, which is known to give excellent 
results for HS systems, and which is computationally straightforward. Denoting by f i ( p )  
the free energy per particle of the uniform system at density p ,  the MWDA approximates the 
excess free energy of the non-uniform system by that of a uniform system, but evaluated at 
a specified weighted density 6,  i.e. 

B F ? [ P ( ~ ) I  = Nf i (6 ) .  (16) 

The weighted density 6 is evaluated self-consistently as a weighted average over p ( r ) ;  in 
the Gaussian approximation, 6 is determined by solving the implicit equation 

where E:) stands for the direct correlation function (DCF) of the uniform liquid. We 
implement equations (16) and (17) to determine the excess free energy of the HS system for 
a given density ps and localization. For the excess free energy per particle of the liquid, we 
adopt again the CS expression, and we use the associated Verlet-Weis [I71 parametrization 
for the direct correlation function. 

Finally, the MFA internal energy U of the FCC solid (the second term in the RHS of 
equation (1 1)) is most easily evaluated in Fourier space, where the double integral turns 
into a sum over the RLvs of the lattice, yielding the expression 

where 
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Figure 1. Ideal free energy F,d,  excess free energy Fex, MFA internal energy U at temperature 
keTIc = 1.0, and total free energy F,,, per unit volume V of an KC solid against the localization 
panmeter m d  The values of the parameten axe here k o 3  = 1.00 for lhe average density, and 
S = 0.06 for the mge of the attractive pwt of the potential. The competition between the lhree 
terms results in a minimum lor the total free energy for a non-zero value of the localization 
parameter. 

The total free energy of the FCC solid is the sum of the ideal, excess, and Mean- 
Field p3rt.s. For any given average solid density psu3, this sum has to be minimized with 
respect to the localization parameter 01. In figure I ,  we show the typical behaviour of 
FAd, F F ,  and U as functions of the localization parameter. An important point is that the 
very dense FCC solids which we have to consider in order to investigate the possibility 
of isostructural transitions are charactmized by an extremely high value of the localization 
parameter. Typically, aminu2 is of the order of several thousands for pSo3 > 1.25; (cf. 
a,inu2 - 100 for freezing). This means that in order to achieve a minimum of the total 
free energy, the MWDA as well as the MFA calculations have to be carried out for very 
high 01 values, and in order to guarantee the convergence of the RLV sums for both of 
them (equations (17) and (18)), a large number of RLVs has to be included in the sums. 
We have included up to 1850 shells of RLVs in our calculations, a number which turns out 
to be sufficient to guarantee the convergence for the range of densities and temperatures 
considered here. 

Having developed the approximations to obtain the Helmholtz free energy of the uniform 
and non-uniform phases for any value of the thermodynamic density, the coexistence 
parameters of the model are then determined by means of the well known common-tangent 
construction. 

3. Results and discussion 

We have considered the values S/u = 0.04, 0.06, 0.08, and 0.09. It will be shown that the 
first three are small enough for the phase diagram to display an FCC-FCC coexistence which 
is not preempted by the melting transition (i.e. the triple temperature for the liquid-FCC-FCC 
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Figure 2. Theoretical predictions for the phase dingrams of square-well systems (a) far 
8/a = 0.04. 0.06, and 0.08, and (b) for 6/a = 0.09. For the latter case, we also show 
the ‘solid-solid cwxistence cuwes’ obtained by performing the common-tangent construction 
on the solid curves alone (the dashed lines). Clexlly, the solid-solid transition is preempted by 
melting in this e. and thus it never matelializs. 

coexistence is lower than the critical temperature of the FCC-FCC coexistence), whereas in 
the latter case the opposite is true. We have not considered even smaller values of S/a 
(for which Bolhuis and Frenkel have carried out simulations [3]), since for these cases the 
coexisting solids are very dense, the localization parameter (especially at low temperatures) 
is exzremely high, and therefore a very large number of RLVS must be included in the MWDA 
and MFA summations, thus making the calculation very expensive, without offering any new 
insights. 

In figure 2(a), we show the obtained phase diagrams (in the temperature4ensity plane) 
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Figure 3. Theoretical ( th is  work) against simulation [31 results lor the coexistence curves (a) 
Slo = 0.04, a d  @) 810 = 0.06. Inset: log-log plot of the deviations of lhc density from ps 
against the deviations-of the temperature from Tc, for 8)g = 0.06. Here P = po3* f z kBT/s, 
AB = P - &. and AT = i - T,. The data are fitted by a straight line having slope 0.49 ir 112 
(the dashed line), indicating a value p = 112 for the critical exponent. 

for the choices S/o = 0.04, 0.06, and 0.08. It can clearly be seen that an isostructural Fcc- 
to-FCC transition does take place. The separation of the triple from the critical temperature 
becomes smaller with increasing 6, until i t  eventually disappears for 6/a 0.08, This 
estimate is obtained by considering that (a) for S/a = 0.08 the two temperatures are already 
very close, and (b) for S/o = 0.09 the FCC-to-FCC transition is readily preempted by the 
melting one, and the phase diagram consists of simply two phases, namely the uniform liquid 
and the FCC solid (see figure Z(b)). It must be emphasized that no liquid-gas transition has 
been found for these values of 6, within the framework of this approach. On the other hand, 
it is a well known fact lhat for long-range attractions (large 6) a coexistence between two 
uniform phases does occur. (Of course, in this case there is no solid-solid transition.) Thus, 
the phase diagram evolves from a picture with just one fluid phase and two isostructural 
coexisting FCC solids for small 6, to a single fluid and a single solid for intermediate 6 to 
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the usual case of two fluid phases and one solid phase for large values of 6. 
In figure 3, we show again our results, but now we put on the same plots the simulation 

data of Bolhuis and Frenkel 13). It can be seen that our mean-field approach has the 
usual characteristics of all mean-field theories: the critical temperature T, is overestimated 
(by about 17%). However, the critical density pc is rather insensitive to the approximation. 
Unfortunately, no simulation data are available for the triple temperature q, so a comparison 
cannot be made at present. Nevertheless, we expect that the triple temperature from our 
MFA is not too far from the true one, and in particular that the deviation for T, is smaller 
than for the T,. The reason is that at Tr the fluctuations, which are ignored in the MFA, and 
which are responsible for the overestimation of T,, are much more strongly suppressed than 
at criticality. We have also calculated the critical exponent j3 defined by the scaling relation 
(p  - pc) - (T - T,)@ for T close to T,, obtaining the classical exponent ,3 = 1/2. (See 
figure 3(b), inset.) 

Other than the expected overestimation of T,, it can be seen from figures 2 and 3 that 
the theory reproduces all the qualitative and quantitative features of the simulations. A 
summary of the results is given i n  table 1, where also a comparison is made for the critical 
density with the simulations [3] and the predictions from the cell model [3]. Referring to 
figures 2, 3, and to the entries of table 1, the following remarks can be made. 

(i) The critical temperature Tc is rather insensitive to the range of the interaction 6, and 
it shows a slight decrease as 6 is lowered. 

(ii) The shape of the FCC-FCC coexistence lines i s  asymmetric, and this asymmetry 
becomes stronger for smaller 6,  i.e. as the tight part of the coexistence curves approaches the 
close-packing limit. The theoretical curves also reproduce the ‘shifting’ of the coexistence 
curves to the right, as well as the ‘narrowing’ of the typical width of the curves as 6 
decreases. 

(iii) The critical density pe is very close to the simulation result, albeit also slightly 
overestimated by the theory. It is particularly interesting that the actual simulation result is 
for the cases considered here intermediate between the MFA value and the prediction of the 
cell model, pcu3 = p0u3(l +6/0)-~, where ,006~ = is the close-packing limit of the 
density. 

(iv) Within the range of 6 which we have examined, the dependence of the triple 
temperature as well as the critical temperature on 6 is linear. In fact, if we define ‘f =_ keT/&, 
and 8 = &/U, then the results shown in table 1 can be fitted by straight lines as follows: 

(20) = 18.28 + 0.608 67 

F, = 0.5758 + 2.060 17. 

and 

(21) 

From equations (20) and (21) above, we can readily obtain an estimate for the ‘critical’ 
value 6.  for which the triple temperature is equal to the critical temperature, and thus for 
0 < 6 c 6. there is a solid-solid coexistence and a single fluid phase, whereas for 6 > 6. 
the solid-solid coexistence is preempted by melting. In addition, for 8, < 6 _<u/3, there 
is only one fluid phase [3], and thus the phase diagram consists of just one fluid and one 
solid phase in this range. This value is predicted to be 

&/U = 0.08235 (22) 

within the framework of our theory. In reality, this value must be somewhat smaller since, 
as we argued above, the critical temperature is overestimated in our theory by an amount 
which is larger than that for the triple temperature. 
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Table 1. The triple temperature T,. critical temperalure Tc, and critical density pL for the FCC- 
FCC transition predicted by this work. for different values of 6. For the last quantity. we also 
show the results from simulation, and the predictions of the cell model, for comparison. 

k B T , / E  k,T,/s (ad)“ ( P c U ’ ) ~  ( P d ‘  

S/a = O B 4  1.337 2.083 1.289 1.265 1.257 

&/a =0.06 1.700 2.095 1.219 I.205 1.187 

6/a=0.08  2.065 2.106 1.155 - 1.122 

a This work. 

L: Prediction of the cell model: fia3 = -.&I + 
Simulation results (figure 2 in [31). 

(see [3]). 

4. Conclusions 

We have presented a simple density-functional theory of solid-to-solid isostructural 
transitions, which confirms the existence of the expanded-to-condensed FCC transition 
terminating at a critical point, and is in quantitative agreement with the predictions from 
the simulations. The existence of the transition is clearly due to the attractive part of the 
interaction, which is treated in the mean-field approximation in OUT theory. A straightforward 
improvement of the theory, which should improve the estimate of the critical temperature, 
would be, therefore, the inclusion of the correlation effects (the last terms in equations (8) 
and (9)) which we have ignored in this approach. Moreover, a s  a further improvement, 
we can treat the&![ inferaction in a non-penurbative fashion, without any splitting into a 
hard-sphere and an attractive interaction. Indeed, most non-perturbative density-functional 
approaches are based on a thermodynamic mapping of the solid phase into a homogeneous 
phase at the same temperature, but having a ‘coarse-grained’ weighted density. The main 
problem in the implementation of such theories in systems with attractive, long-range 
potentials (e.g. Lennard-Jones) is that the fluid phase displays. below the liquid-gas critical 
temperature, a spontaneous separation into a dense liquid and a dilute gas, and in this region 
the thermodynamic functions of the fluid are no1 well defined. However, the systems with 
a short-range attraction are free of such difficulties, since a single fluid phase exists, and 
the mapping is, at least in principle, possible. We plan to return to these approaches in the 
near future. 
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Appendix 

Equations (8) and (9) of the main text can also be derived without reference to the Gibbs- 
Bogoliubov inequality. This follows directly from the fact that the equilibrium two-particle 
density of any system is related to the functional derivative of the excess Helmholtz free 
energy with respect to the interaction potential by [I41 
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We now choose a one-parameter integration path: 

U, E U ( T ,  T', a) = u ~ ( T ,  r') + a(u(r ,  r') - u ~ ( T ,  r')) (A2) 

where uo is a reference potential (the hard-sphere interaction in our case), and the parameter 
a varies from zero to unity. With this choice, equation (AI) can be functionally integrated 
to give 

F[P(T)l = Fob(T)] + 5 ~ ' ~ ~ J ~ ~ ' * ~ ( u ~ ; T , T ' ) ( u ( T , T ' )  - V O ( T , T ' ) ) ~ T ~ T '  (A3) 

where p'21(u,; T ,  T') is the two-body density corresponding to the interaction U,. Clearly, the 
quantity U(P. T' ) -uo( r .  T') in (A3) isjust the attractive part @ ( I T - T ' ~ )  ofthe potential. Now 
we make the following approximation: we replace the two-particle density p"'(ue; T, T ' )  

by the distribution at the reference interaction: 

p'2'(ua; T, T') 25 p")(uo; T, T') = p ( r ) p ( r ' ) ( l  + hf ' (T ,  T')). (A4) 

Now the n integration in (A3) is trivial, and we obtain equation (9) of the main text for the 
non-uniform phase, and equation (8) for the uniform one. 
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